Reducing Carbon Emissions in a Closed-Loop Production Routing Problem with Simultaneous Pickups and Deliveries under Carbon Cap-and-Trade

نویسندگان

  • Xuanjing Fang
  • Yanan Du
  • Yuzhuo Qiu
چکیده

The incorporation of reverse logistics into production routing problems can promote and coordinate the implementation of sustainable development for supply chains. This study aims to incorporate reverse logistics into production routing problems and investigate the reduction of carbon emissions under carbon cap-and-trade. Mixed-integer programming models are proposed for the production routing problem with reverse logistics by considering simultaneous pickups and deliveries in vehicle routing subproblems. To solve this problem, we propose a solution method of a branch-and-cut guided search algorithm based on adaptation of known valid inequalities. Computational results highlight the trade-offs among various performance indicators, including emission levels and operational costs of production, inventory holding, fuel consumption, and drivers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous reduction of emissions (CO2 and CO) and optimization of production routing problem in a closed-loop supply chain

Environmental pollution and emissions, along with the increasing production and distribution of goods, have placed the future of humanity at stake. Today, measures such as the extensive reduction in emissions, especially of CO2 and CO, have been emphasized by most researchers as a solution to the problem of environmental protection. This paper sought to explore production routing pro...

متن کامل

Vehicle Routing Problem: Simultaneous Deliveries and Pickups with Split Loads and Time Windows

The Vehicle Routing Problem with Simultaneous Deliveries and Pickups (VRPSDP) has attracted great interest in research due to its potential cost savings to transportation and logistics operators. There exist several extensions of VRPSDP, and among these extensions, Simultaneous Deliveries and Pickups with Split Loads Problem (SDPSLP) is particularly proposed for eliminating the vehicle capacity...

متن کامل

Robust Design of a Closed-loop Supply Chain Network for Uncertain Carbon Regulations and Random Product Flows

This paper addresses a multi-period capacitated closed-loop supply chain (CLSC) network design problem subject to uncertainties in the demands and returns as well as the potential carbon emission regulations. Two promising regulatory policy settings are considered: namely, (a) a carbon cap and trade system, or (b) a tax on the amount of carbon emissions. A traditional CLSC network design model ...

متن کامل

A new Bi-objective model for a Two-echelon Capacitated Vehicle Routing Problem for Perishable Products with the Environmental Factor

In multi-echelon distribution strategy freight is delivered to customers via intermediate depots. Rather than using direct shipments, this strategy is an increasingly popular one in urban logistics. This is primarily to alleviate the environmental (e.g., energy usage and congestion) and social (e.g., traffic-related air pollution, accidents and noise) consequences of logistics operations. This ...

متن کامل

A New Mathematical Model for the Green Vehicle Routing Problem by Considering a Bi-Fuel Mixed Vehicle Fleet

This paper formulates a mathematical model for the Green Vehicle Routing Problem (GVRP), incorporating bi-fuel (natural gas and gasoline) pickup trucks in a mixed vehicle fleet. The objective is to minimize overall costs relating to service (earliness and tardiness), transportation (fixed, variable and fuel), and carbon emissions. To reflect a real-world situation, the study considers: (1) a co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017